首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   76篇
  免费   8篇
  国内免费   1篇
工业技术   85篇
  2022年   1篇
  2021年   6篇
  2020年   3篇
  2019年   8篇
  2018年   9篇
  2017年   5篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   7篇
  2011年   8篇
  2010年   10篇
  2009年   3篇
  2008年   1篇
  2007年   2篇
  2005年   3篇
  2002年   1篇
  1995年   1篇
  1994年   1篇
排序方式: 共有85条查询结果,搜索用时 15 毫秒
21.
In mining operations, comminution processes are responsible for most of the energy used during mineral recovery. Low fragmentation efficiency of comminution in the range of 1-2% (Tromans, 2008) occurs due to the quasi-static nature of the process which is typically accompanied by low impact velocities. Accurate estimation of efficiency requires a measurement system to account for fractal parameters such as surface roughness and fracture surface area. Continuum breakage models of single particles fail to estimate the actual stress transformation that affects bulk material during comminution. In order to study comminution in a dynamic regime at higher strain rates than those of conventional equipment, a compressed-air apparatus designed to launch a projectile at velocities as high as 450 m s−1 has been developed to measure the quantitative nature of high-speed impacts on aggregated rock samples. A method to calculate the energy efficiency is also presented. The results of experiments conducted on three materials suggest the energy efficiency of rock breakage can be improved by two or three times under high velocity impact for the same energy input level. The paper reports an empirical model of impact velocity and energy input and discusses the advantages and limitations of this model.  相似文献   
22.
A 4-lump kinetic model including hydrogen consumption for hydrocracking of vacuum gas oil in a pilot scale reactor is proposed. The advantage of this work over the previous ones is consideration of hydrogen consumption, imposed by converting vacuum gas oil to light products, which is implemented in the kinetic model by a quadratic expression as similar as response surface modeling. This approach considers vacuum gas oil (VGO) and unconverted oil as one lump whilst others are distillate, naphtha and gas. The pilot reactor bed is divided into hydrotreating and hydrocracking sections which are loaded with different types of catalysts. The aim of this paper is modeling the hydrocracking section, but the effect of hydrotreating is considered on the boundary condition of the hydrocracking part. The hydrocracking bed is considered as a plug flow reactor and it is modeled by the cellular network approach. Initially, a kinetic network with twelve coefficients and six paths is considered. But following evaluation using measured data and order of magnitude analysis, the three route passes and one activation energy coefficient are omitted; thus the number of coefficients is reduced to five. This approach improves the average absolute deviation of prediction from 7.2% to 5.92%. Furthermore, the model can predict the hydrogen consumption for hydrocracking with average absolute deviation about 8.59% in comparison to those calculated from experimental data.  相似文献   
23.
In spite of remarkable improvements in cancer treatments and survivorship, cancer still remains as one of the major causes of death worldwide. Although current standards of care provide encouraging results, they still cause severe systemic toxicity and also fail in preventing recurrence of the disease. In order to address these issues, biomaterial‐based implantable drug delivery systems (DDSs) have emerged as promising therapeutic platforms, which allow local administration of drugs directly to the tumor site. Owing to the unique properties of biopolymers, they have been used in a variety of ways to institute biodegradable implantable DDSs that exert precise spatiotemporal control over the release of therapeutic drug. Here, the most recent advances in biopolymer‐based DDSs for suppressing tumor growth and preventing tumor recurrence are reviewed. Novel emerging biopolymers as well as cutting‐edge polymeric microdevices deployed as implantable antitumor DDSs are discussed. Finally, a review of a new therapeutic modality within the field, which is based on implantable biopolymeric DDSs, is given.  相似文献   
24.
One of the key elements in many video games is competition. Based on Self-Determination and Flow theories, this paper explores the process through which competition makes a video game satisfying. A structural model that examines the impacts of Situational Competitiveness (manipulated via modes of competition) and Dispositional Competitiveness (as a personality trait) on gameplay experience is proposed and validated. The results show that the perception of video game competitiveness has a strong effect on Flow experience and Satisfaction. While an individual’s personality impacts the perception of a game’s competitiveness, this perception can also be influenced by the mode of competition.  相似文献   
25.
Sepehr Ravati 《Polymer》2011,52(3):718-731
In this work a 3D porous polymeric conducting material is derived from a multi-percolated polymer blend system. The work has focused on the preparation of low surface area porous substrates from polymer blends followed by the deposition of polyaniline conductive polymer (PANI) on the internal porous surface using a layer-by-layer (LbL) technique. The approach reported here allows for the percolation threshold concentration of polyaniline conductive polymer (PANI) to be reduced to values of no more than 0.19%. Furthermore, depending on the amount of PANI deposited, the conductivity of the porous substrate can be controlled from 10−15 S cm−1 to 10−3 S cm−1.Ternary and quaternary multi-percolated systems comprised of high-density polyethylene (HDPE), polystyrene (PS), poly(methyl methacrylate) (PMMA) and poly(vinylidene fluoride) (PVDF) are prepared by melt mixing and subsequently annealed in order to obtain large interconnected phases. Selective extraction of PS, PMMA and PVDF result in a fully interconnected porous HDPE substrate of ultra-low surface area and highly uniform sized channels. This provides an ideal substrate for subsequent polyaniline (PANI) addition. Using a layer-by-layer (LbL) approach, alternating poly(styrene sulfonate) (PSS)/PANI layers are deposited on the internal surface of the 3-dimensional porous polymer substrate. The PANI and sodium poly(styrene sulfonate) (PSS) both adopt an inter-diffused network conformation on the surface. The sequential deposition of PSS and PANI has been studied in detail and the mass deposition profile demonstrates oscillatory behavior following a zigzag-type pattern. The presence of salt in the deposition solution results in a more uniform deposition and more thickly deposited PSS/PANI layers. The conductivity of these samples was measured and the conductivity can be controlled from 10−15 S cm−1 to 10−5 S cm−1 depending on the number of deposited layers. In the case of a porous sample which can be crushed, applying a load to the substrate can be used as an additional control parameter. In that sample a high load results in higher conductivity with values as high as 10−3 S cm−1 obtained. The work described above has focused on very low surface area porous substrates in order to generate a conductive device with the lowest possible concentration values of polyaniline, but high surface area substrates can also be readily prepared using this approach.  相似文献   
26.
The tribological properties of two powder metallurgical (PM) tool steels, high and low nitrogen containing, are investigated by means of three different wear tests: ball‐on‐disc, rubber wheel and scratch test. The ball‐on‐disc tests showed two distinct friction curves corresponding to each material. In order to simulate the tribosystem existing in metal powder compaction dies, the rubber wheel and the scratch test were modified. The rubber wheel test was performed using ferrous powder instead of sand, and scratch testing was carried out by sliding a powder compact over the tool steels. The scratch tests indicated a higher steady‐state coefficient of friction for the low nitrogen containing PM steel as compared with the high nitrogen containing alloy. Additionally, the results from the rubber wheel tests were in agreement with industrial experiences, showing the low nitrogen containing tool steel to suffer from severe galling. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
27.
Optimal design of a natural gas network, which is supposed to convey natural gas from a supply point in south of Iran to some delivery points in north and northwest of Iran, is presented in this paper. Sum of investment and operating costs constitutes the objective function of the present study. A wide range of design parameters, including the network layout, diameter of each pipeline, pressure value at each supply or delivery node, as well as number and locations of compressor stations (CSs) on each pipeline, were considered in the optimization problem. A Genetic Algorithm (GA) which exploits “optimal properties of single pipelines” was presented and used as the optimization tool. Short computation time and repeatability of results ensures achieving the global optimum solution and are positive features of the proposed optimization algorithm. The optimal network design obtained from the optimization procedure consisted of 2660 km of pipelines and 26 CSs. It required a total annual cost of about 366.15 M$/year. The results explain why the layout with the shortest total length is not the optimal choice.  相似文献   
28.
The coarsening of polymer mixtures is an important route towards major morphology modification in multiphase polymer systems. To date however the coarsening of ternary systems has not been significantly examined. In this study the phase coarsening mechanism via annealing for partial wetting, and complete wetting morphologies in ternary polymer blends is characterized. This is a route towards the examination of interfacial coarsening in polymer blends since ternary partially wet systems involve the presence of interfacial droplets while completely wet ternary systems are comprised of a complete interfacial layer. A partial wetting type of morphology is obtained for polybutylene succinate (PBS)/poly(lactic acid) (PLA)/polycaprolactone (PCL). Three different compositions for that system with composition ratios of ?(PBS/PLA) = 1.5; ?(PBS/PLA) = 3; and ?(PBS/PLA) = 10 are prepared to show the effect of the concentration of the self-assembled PLA droplets located at the interface of PBS/PCL. As the concentration of PLA decreases, the growth rate of the PLA phase during the annealing process sharply decreases due to a significant increase of the “surface to volume ratio” of the PLA droplets required in order to cover the interface. In this case, due to the short inter-droplet distances between PLA droplets at the interface, coalescence is controlled by the drainage time. This mechanism is confirmed by the observation of a linear relationship between the third power of droplet size and annealing time. For the 37.5%PBS/12.5%PLA/50%PCL blend, the conservation of interfacial-angles confirms that the annealing time has no effect on the angle values between phases, as predicted by Harkins spreading theory.  相似文献   
29.
There is an increasing trend in using heat pumps in air conditioning (heating/cooling) systems of residential and commercial buildings. The required power to drive the compressor of vapor compression heat pump cycles may be provided by either an electrical motor or an internal combustion engine. In this paper thermal modeling and economic analysis of gas engine heat pumps (GEHPs) are presented based on energy and mass balance equations as well as the gas engine operating parameters (such as thermal efficiency, fuel consumption and fuel mass flow rate) and heat pump operating parameters (such as evaporator and condenser capacity and compressor input power). Based on the modeling results and with estimating GEHP fuel consumption, the economic analysis of using gas engine heat pumps (in comparison with the electrical heat pumps) at various climate regions of Iran, for both residential and commercial (office) buildings, and for both cooling and heating modes, was performed. Appropriate cost functions for predicting GEHP capital investment were proposed. Three approaches including equivalent uniform annual cost (EUAC), the annual cost of energy consumption, and payback period were applied in the economic analysis.  相似文献   
30.
The gas turbine power output and efficiency decrease with increasing ambient temperature. With compressor inlet air cooling, the air density and mass flow rate as well as the gas turbine net power output increase. The inlet cooling techniques include vapor or absorption refrigeration systems, evaporative cooling systems and thermal energy storage (TES) systems. In this paper the thermoeconomic analysis of ice (latent) thermal energy storage system for gas turbine inlet cooling application was performed. The optimum values of system design parameters were obtained using genetic algorithm optimization technique. The objective function included the capital and operational costs of the gas turbine, vapor compression refrigeration system, without (objective function I) and with (objective function II) corresponding cost due to the system exergy destruction. For gas turbines with net power output in the range of 25-100 MW, the inlet air cooling using a TES system increased the power output in the range of 3.9-25.7%, increased the efficiency in the range 2.1-5.2%, while increased the payback period from about 4 to 7.7 years.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号